Ozone therapy

Visit and Join the WeHeal Ozone Therapy Community

For more information, see: Vanderbilt.edu | MayoClinic | Wikipedia


Oxygen therapy is quickly becoming one of the most controversial, yet effective forms of alternative medicine to enter the medical spotlight as the turn of the millennium approaches. It has many potential uses, ranging from a means of headache relief to a possible cure for AIDS and cancer, and the treatments seem simple and inexpensive. Oxygen therapy, however, remains a sketchy area in the medical community. Despite all the claims that have been made, little evidence has been brought into the public’s eye to confirm or deny the validity of these reports. It will be shown, however, that like many other scientific claims, it is easy to separate the facts of oxygen therapy from the fiction.

Many of the advocates of oxygen therapy feel that its potential uses are limitless. This is due to the fact that:

For many years the health sciences have been seeking to identify the primary physical cause of all diseases, and the cure-all that this basic principal would yield. Now both have been found, but their utter simplicity makes them difficult to accept at first since it seems like if it’s that easy, we should have been using them all along.

This fundamental cause of all disease, according to Forest, is a lack of oxygen. This is made evident by the fact that the body is “composed mostly of water, which is eight-ninths oxygen,” and “only oxygen is in such a constant demand that it’s absence brings death in minutes” (http://www.oxytherapy.com/oxyfiles/oxy00009.html).

The Reasoning Behind Particular Methods of O2 Therapy:

Oxidative Therapy: It must be understood that oxygen therapy can be administered in many forms, yet the basis behind the treatments are essentially the same. For instance, hydrogen peroxide is produced by the body itself, and also has numerous functions. It essentially aids, however, in the use of oxygen for breathing, and “is part of a system which helps your body regulate all living cell membranes.” It is also a hormonal regulator, and is important in the production of cell energy and blood sugar. It also it helps to regulate the immune system, as well as chemicals in the nervous system (http://www.oxytherapy.com/h2o2-faq2.html).

The main use, however, of therapeutic gases such as hydrogen peroxide and ozone is to deliver more oxygen to the cells. This is due to the fact that many of the biochemical reactions that take place in the body are reduction oxidation reactions. This may lead to problems, however, because “chemically, anytime a substance is reduced something must be oxidized for your body to stay in balance.” Oxidation, in some instances, may have negative consequences, however, despite the fact that it sustains life and is also a key part of the immune system. This is the reason that “oxidative therapy” is sometimes needed “to encourage healthy oxidation in the cells and tissues” (http://www.oxytherapy.com/h2o2-faq2.html). This topic can also be approached from a different point of view. It not only aids in cell repair, but keeps foreign substances out the body that could potentially be very harmful. This is due to the fact that, “all hostile microorganisms prefer lower oxygen levels than the body’s cells require to remain healthy.” Raising the oxygen levels in the blood not only further purifies the cells, but destroys dangerous pathogens (http://www.oxytherapy.com/oxyfiles/oxy00009.html).

Ozone Therapy: Ozone therapy, like oxidative therapy, is very effective because rather than intoxicating the liver and other organs with drugs, ozone therapy involves oxidizing “the molecules in the shell of the virus.” This particular treatment is, of course, performed with ozone, which is produced by “forcing oxygen through a metal tube carrying a 300 volt charge.” A pint of blood is then drawn from the patient. This is then gently mixed in an infusion bottle with the ozone until it turns bright red. “As the ozone molecules dissolve in the blood, they give up their third oxygen atom, releasing considerable energy which destroys all lipid-enveloped viruses, and apparently all other disease organisms, while leaving the blood cells unharmed.” Moreover, the blood becomes oxygenated more sufficiently than it normally does, although this may seem hard to believe considering the fact that hemoglobin is so efficient. The blood is then injected into the patient, and this process is administered according to the severity and type of disease. “The strengthened blood confers some of its virucidal properties to the rest of the patient’s blood as it disperses,” finally evening out in the end to reach equilibrium. The patient’s state then remains the same provided he exercises, diets, and breathes deeply regularly (http://www.oxytherapy.com/oxyfiles/oxy00009.html).

Hyperbaric Oxygen Therapy: Oxygen therapy is most effective when a hyperbaric chamber is used. This is particularly effective because the air one normally breathes is around twenty-one percent oxygen, but during hyperbaric oxygen therapy, “you breath pure oxygen and the pressure surrounding your body will be increased to two or three times normal.” This increased oxygen means that the blood is carrying more oxygen to the cells, which of course leads to more substantial cell repair (http://www.oxytherapy.com/hbo-faq.html).

What Are The Claims?:

Astonishingly enough, some claim that oxygen has demonstrated reversible effects in two of the most deadly diseases plaguing the United States; AIDS and cancer. Oxygen therapy has also been reported to have many other less significant uses, including relief of poor circulation and gangrene, as well as heart disease. Among others are headaches and lung disease. These varying health problems all require different forms of oxygen therapy, and all have had varying levels of success (http://www.oxytherapy.com/h2o2-faq2.html).

Why Are These Potential Benefits Kept Secret?:

As previously mentioned, many believe oxygen therapy to be a sort of “universal” treatment that can have a positive effect on nearly every category of disease. There is certainly a lack of concrete evidence, however, to support these claims, as well as a lack of exposure. Many claim that this is due to the fact that if these treatments were readily exposed to the public, “98% of all the drugs, testing, and disease related surgery” would be rendered obsolete. Moreover, the large hospitals, pharmaceutical industrialists, and insurance companies would certainly have to deal with a fair number of unprecedented economic problems. They claim that this is the future that the world now faces, and that there are many who are trying to protect against it:

This is precisely the situation that exists, and the cure has indeed been around for ages. It has been independently reported effective against virtually every disease at one time or another, in thousands of public-domain medical articles, which had never been collected or correlated until recently. And it is so simple and basic that concealing it from physicians and the general public has required a tremendous smoke screen of artificial complications, and user hostile treatments.

As Dr. Terry McGrath says, “there’s simply no economic incentive, since it’s an unpatentable” process and provides for no real financial gain (http://www.oxytherapy.com/oxyfiles/oxy00009.html).

The Truth About Oxygen Therapy:

Researchers such as Dr. Terry McGrath certainly have reasons to be excited about the prospects of oxygen therapy in the future, but it is necessary to realize that many of these claims have been based on assumptions or theory. For this reason, “hyperbaric oxygen has been described as ‘a therapy in search of diseases,'” and justifiably so. Research, however, has proven the existence of beneficial chemical and cellular effects that have caused many to reassess their feelings on the administering hyperbaric oxygen as a primary therapy. The rationale behind this treatment is rather simple. When one hundred percent oxygen is administered, the oxygen tension in living tissue can reach nearly 400 mm Hg, which results in numerous physiologic effects. With this in mind, when the environment and dosages are controlled, the benefits of oxygen therapy become substantial (Tibbles and Edelsberg, 1996).

Positive Outcomes for Cancer Research:

Claim: As previously mentioned, many believe that oxygen therapy has much to contribute to the research and potential cure of cancer. Dr. Otto Warburg has noted that hydrogen peroxide therapy may be particularly useful in destroying anaerobic cancerous growths. He arrived at this conclusion by noting the fundamental differences between cancerous and normal cells. He concluded:

Both derive energy from glucose, but the normal cell requires oxygen to combine with the glucose, while the cancer cells break down glucose without oxygen, yielding only 1/15 the energy per glucose molecule that a normal cell produces. This is why cancer cells have such a huge appetite for sugar, and also why people who consume excessive quantities of sugar tend to get cancer more often (http://www.oxytherapy.com/oxyfiles/00009.html).

The rationale behind this theory certainly seems logical enough, but it’s simplicity may cause skepticism.

Fact: Although no evidence has arisen that oxygen therapy in any form can cure cancer, there is mounting evidence that it certainly has many benefits. The majority of this evidence lies in the removal of tumors. Oxygen tension in tissues depends on metabolism and vascular supply, and in tumors, there exist many areas of irregular blood flow. This may be caused simply by the nature of the mutinous cells, or also because the blood capillaries may collapse due to external pressure resulting from unbalanced cell proliferation. This may also be the result of holes in the vessel walls, decreased diffusion capacity, alveolar hypoventilation, or even rapidly opening and closing vessel walls. These conditions may collectively result in a problem known as hypoxia within cancerous growths, which limits the effectiveness of radiation therapy (Teicher and Rose, 1984; Tarpy and Farber, 1994).

The problem of hypoxia can be a major setback in the administration of radiation therapy, but the use of oxygen-carrying perfluorochemical emulsion (PFCE) is quickly changing that. This is due to the fact that perfluorochemicals have the ability to carry large amounts of oxygen and carbon dioxide. In one experiment, “the enhancement in tumor growth delay of the Lewis lung tumor observed with several i.v.-administered doses of PFCE and 95% O2:5%CO2 (carbogen) breathing in single-dose and fractional radiation treatment protocols” were described. In this study, Lewis lung tumor cells were placed into the gastrocnemius muscles of mice and allowed to grow to 50 cu mm in volume. The endpoint of the experiment was reached when the tumor reached the size of 500 cu mm, which is normally reached in 14 days when untreated. Treatment involved placing the animals in a “circulating carbogen atmosphere for 1 hour prior to and during both the morning and afternoon radiation treatments.” The results of the study indicated that “PFCE and carbogen breathing significantly enhanced X-ray induced tumor growth delay.” Specifically, in two of the groups studied the “ceiling point for tumor growth delay” was measured at 60 days, with no palpable tumors. This, however was not true of all groups studied (Teicher and Rose, 1984).

This method may have substantial benefits to humans in the future. For example, Fluosol-DA is being tested as a transport mechanism for oxygen in such instances as surgery, hemorrhage, and myocardial infection. These methods are of particular significance because they indicate a nontoxic method of delivering oxygen to deficient tissues (Teicher and Rose, 1984).

In another study the radiation chemistry of polyethylene (PE) was studied and indicated “a pronounced catalytic effect of molecular hydrogen in catalyzing the decay of alkyl radicals, -CH2CHCH2- in the solid PE at room temperature.” It has been thought that free radicals are involved in the growth of cancer, and this study aimed to find out if it was true. Mice were use in the experiment, and they all had cancerous growths as a result of prolonged exposure to ultraviolet light. After placing the mice in a glass chamber and filling it with a mixture of 97.5% hydrogen and 2.5% oxygen, it was observed after the first ten days “(i)that the tumors had turned back, (ii) that some had dropped off, (iii) that some seemed to be shrunk at their base and to be in the process of being ‘pinched off,’, and (iv) that the mice appeared to suffer no deleterious consequences”. The first three items were not observed in those mice not administered the therapy. It should also be noted that the environment of 2.5% oxygen and 97.5% hydrogen can be considered safe due to the fact that mixtures of oxygen and hydrogen containing less than 5.3% oxygen will not explode even when a spark is introduced (Dole, Wilson, and Fife, 1975). No studies, however, were found that demonstrated similar results with humans.

Hypoxia and Lung Disease:

Claim: There were no specific claims regarding this topic, however, it was claimed in several instances that oxygen therapy has beneficial effects on patients with lung disease and hypoxia.

Fact: Some believe that “the most important benefit of long-term oxygen therapy is its effect on the survival in patients with hypoxemia.” This is due to the fact that besides impacting the effectiveness of radiation treatment, tissue hypoxia also leads to problems in nearly every major organ in the body, which may result in “memory loss, impaired judgment, cardiac ischemia, and pulmonary hypertension.” Also, data now supports the use of oxygen therapy as a means of prolonging the lives of those with hypoxemia. “One early study found a 30 to 40% reduction in mortality in severely hypoxemic patients on continuous oxygen therapy.” Not only this, but collaboratively, the British Medical Research Council Study and the Nocturnal Oxygen Therapy Trial found that a patient survives proportionally to the number of hours that they receive supplemental oxygen every day. “Data from NOTT showed that mortality in a group of patients receiving 19 hours of oxygen per day was one-half that of a group that received 12 hours of daily oxygen.” The reason for this has not yet been clarified, but “increasingly evidence has shown that oxygen therapy can improve pulmonary hemodynamics and lead to reduced cardiac work and greater oxygen delivery” (Tarpy and Farber, 1994).

In another study the progression of pulmonary hypertension as a result of hypoxia was studied in 16 severe chronic obstructive pulmonary disease before and after long-term oxygen therapy. The results were not entirely positive throughout the treatment (i.e. at some points the pulmonary artery pressure increased), but at the end of the long-term oxygen therapy, “a reversal in the progression of pulmonary arterial hypertension was observed.” Unfortunately, the pulmonary artery pressure rarely returned to normal. As a result, vasodilators may be implemented in the future (Weitzenblum, Kessler, Oswald, and Fraisse, 1994).

A Possible Cure For AIDS?:

Claim: Many researchers feel that oxygen therapy has potential benefits for AIDS patients; perhaps even a cure. For example, Dr. Preuss, in Stuttgart, supposedly has ten case histories of patients with AIDS that he has cured using oxygen therapy. The problem is that “his and the other physicians’ reports are all anecdotal rather than in the form of ‘controlled studies,’ since they could not be expected to treat some patients,” and deny it to others in order to gather evidence. As a result, their findings are not considered proof by the majority of physicians (http://www.oxytherapy.com/oxyfiles/oxy00009.html).

Fact: Unfortunately, even with all the benefits of oxygen therapy, it has not been found in any way to destroy the HIV virus. There has, however, been one study conducted that proves there may be at least some kind of relief available to AIDS patients in particular. Patients with pneumocystis carinii pneumonia (PCP) may also be included in this group, however, because similar to AIDS patients, they too “have an exceedingly large intrapulmonary shunt fraction causing severe hypoxemia.” This treatment is known as face mask continuous positive airway pressure (FMCPAP), and works best on “a patient who is able to protect his or her airway and who is able to ventilate adequately” (DeVita, Friedman, and Petrella, 1993).

This treatment can only be provided safely if the patients are well selected. Optimally, they would be “alert, cooperative, and understand their disease and the rationale for FMCPAP.” The patient should also “be failing or nearly failing ‘conventional’ oxygen support, i.e., rebreather and nonrebreather masks . . ..” Ultimately, however, there are many factors that may not allow a patient to undergo this type of procedure do to the mental strain and duration of treatment. There has been only one study conducted on such a procedure, and “there was a statistically significant improvement in oxygenation and a decrease in the respiratory rate with no deterioration in ventilation when patients were placed on CPAP.” It was also noted that in patients with AIDS, FMCPAP “improves pulmonary performance without invasion, eliminates the need for mechanical ventilation, provides a ‘bridge’ to and from mechanical intubation, delays the need for endotracheal intubation, and titrates ICU (intensive care resources),” and it provides psychological benefit in the long-term (DeVita, Friedman, and Petrella, 1993).

Treatment of Severe Trauma to the Limbs:

Claim: There were no specific claims regarding this topic, but many feel that oxygen therapy has potential benefits in regard tissue and limb problems.

Fact: Hyperbaric oxygen therapy has been praised in the past for “the treatment of severe trauma to the limbs in association with surgery because of its effects on peripheral oxygen support, muscular ischemic necrosis, compartment syndrome, and infection prevention.” This is so important because in severe injuries to the extremities, prompt vascular repair may be necessary because ischemia may occur as a result of significant damage to arteries or soft tissue damage. This could be further complicated by hypoxia and other problems. HBO (hyperbaric oxygen therapy) may be implemented in such situations because it results in an increase in the amount of oxygen dissolved in plasma. This is known as hyperoxygenation, and “can be of great benefit because of its multiple effects: improvement of oxygen delivery and preservation of tissue viability in ischemic areas, vasoconstriction reducing vasogenic edema in compartment syndrome, prevention of infection notably due to anaerobic microorganisms, and enhancement of the wound healing process.” It can be said then that HBO therapy counteracts most factors that would prevent a wound from healing properly (Bouachour, Cronier, Gouello, Toulemonde, Talha, and Alquier, 1996).

A study was recently carried out to “evaluate the effect of HBO in crush injuries of the limbs and its uses as an adjunctive measure.” Over a four-year period, patients with severe limb damage were dispatched to a nearby hyperbaric chamber immediately after their initial procedure or evaluation. These patients were randomly assigned to receive the actual HBO therapy or placebo upon admission to the hyperbaric unit. “The four primary study endpoints were wound healing without tissue necrosis requiring surgical excision; new major surgical procedures in relation to progressive and massive revitalization after entry in the trial, time of healing, and length of hospitalization.” Eighteen patients were enrolled in each of the HBO and placebo groups. The results of the study were what the researchers had hoped. “Complete wound healing without tissue necrosis requiring surgical excision was obtained for 17 patients in the HBO group vs. 10 patients in the placebo group.” The subgroup with participants over the age of 40 showed even more promising results. Those with grade III soft-tissue injury healed 87.5% of the time in the HBO group, while those in the placebo group healed only 30% of the time. Little or no differences were found in the time of healing, the number of wound dressings, or the length of hospitalization (Bouachour, Cronier, Gouello, Toulemonde, Talha, and Alquier, 1996).

Similarly, calciphylaxis is a rare condition leading to skin ulcers that can be very difficult to treat. In one case, “in an effort to evaluate tissue oxygenation, it was decided to map out transcutaneous oxygen tension around ulcers using a large Clark polarographic electrode modified to contain a heating element and thermistor.” This was attempted after the usual initial treatment of parathyroidecomy did not work. When the electrode was heated, it produced vasodilatation in the surrounding arterioles and capillaries, thus increasing the size of the skin pores. “These responses produce oxygen tension sat the skin surface that closely approximate arterial oxygenation.” It was then speculated that hypoxia existed in the ulcers themselves (Vassa, Twardowski, and Campbell, 1994).

The actual HBO therapy consisted “of high-dose oxygen inhalation while the patient is exposed to elevated ambient pressure in a metal and acrylic chamber.” After 38 “dives” the treatment was over. Following this end it was noted that the skin grafts were more easily accepted, and all the skin lesions had completely healed. The patient was finally permitted to go home making remarkable progress (Vassa, Twardowski, and Campbell, 1994).

Headache Relief and More:

Claim: Oxygen therapy provides pain relief in headaches.

Fact: Carbon monoxide poisoning is known to have both mild and deadly effects. Although not in any way directly correlated to the common headache, headaches induced from mild carbon monoxide inhalation may be relieved through oxygen therapy. A toxicologist would be able to assess the severity of one’s condition and determine whether or not 100% oxygen administered for 4 to 6 hours would be necessary (Tibbles and Edelsberg, 1996).

More importantly, however, carbon monoxide poisoning is the most prevalent cause of poison-induced death in the United States. Unlike mild carbon monoxide poisoning, severe carbon monoxide poisoning may be characterized “by loss of consciousness (syncope, seizures, and coma), neurologic deficits, pulmonary edema, myocardial ischemia, and severe metabolic acidosis.” Promising studies, however, indicate that both the mild and severe cases of carbon monoxide poisoning can be countered with oxygen therapy as well. In one trial “in which 17 of 26 patients had transient loss of consciousness, hyperbaric oxygen was beneficia.” (Tibbles and Edelsberg, 1996). Unfortunately, all victims of carbon monoxide inhalation are at risk for neuropsychological sequelae. It should also be noted, however, that “analysis of the NOTT data has shown an improvement in the general alertness, motor speed, and hand grip in patients receiving oxygen” in COPD cases where neuropsychologic factors played a role (Tarpy and Farber, 1994).

Oxygen Therapy: Present and Future:

One can clearly see many changes in the field of oxygen therapy these days as tests are performed every day and theories are rendered beneficial or obsolete. “Originally a mode of treatment largely based on clinical experience, more and more indications are now accepted only on the basis of sound experimental evidence and randomized clinical trials” (Bakker 1992). This is highly beneficial to the medical community because the realities of a very effective treatment are finally coming into the light. Good and bad results come of this, but that is to be expected with any treatment as broad as oxygen therapy. Particularly promising results were arrived at in cancer research, lung disease, and limb trauma. AIDS is a problem that may continue to plague the world for a long time, and it is a bit radical to even “claim” that oxygen therapy can actually cure AIDS. Despite the benefits of oxygen therapy in many illnesses, it is rarely an actual cure for anything. It merely alleviates the problem in many cases or slows the progress of the particular disease. This, however, is better than no positive result at all, and many people stand to benefit a great deal from these treatments in the future.

In the future the many aspects of oxygen therapy will be studied and perfected so that everyone may share its benefits. Among new applications ready to be tested are the “different ways of monitoring and measuring tissue oxygen tensions, hyperbaric lung lavage in pulmonary alveolar proteinosis, the influence of hyperbaric oxygen on cultivated neuroblastoma cell lines in vitro, the influence of hyperbaric oxygen on organ preservation for transplantation purposes, and the influence of hyperbaric oxygen on mycosis and yeasts both in vitro and in vivo” (Bakker 1992). Oxygen therapy is certainly not a “universal” treatment as some claim, but it will most likely make very serious contributions to the medical community in the future.

Visit and Join the WeHeal Ozone Therapy Community

For more information, see: Vanderbilt.edu | MayoClinic | Wikipedia


WeHeal is very grateful to our valued sources of information which include Wikipedia, WebMD, ClinicalTrials.gov, Cancer.gov, Infoplease, and the US CDC (Center for Disease Control).